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We give necessary and sufficient conditions for a Herglotz function to be the 
w-function of a random stationary Jacobi matrix. 
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1. INTRODUCTION 

There is undoubtedly much to gain from a clear understanding of Mark 
Kac's deep contributions to mathematical physics and probability theory. 
We would like to pay homage to his joint work with P. van Moerbeke on 
the inverse spectral theory of periodic Jacobi matrices and its application 
to the problem of the Toda lattice/5'6) We propose an extension of the 
inverse spectral theory of Jacobi matrices to the random stationary case. 
We hope to be able to discuss the problems of some "random Toda Lat- 
tices" in the near future. 

Random Schr6dinger operators appearing in the mathematical theory 
of quantum disordered media and their spectral properties have been under 
very active investigation during the last decade; for review see, for example, 
Refs. 1, 2, 15, or Chapter 9 of Ref. 13. Since the assumptions of stationarity 
and ergodicity hold most of the time, they appear as natural 
generalizations of periodic and almost periodic Schr6dinger operators. This 
last point is important in understanding the effect of randomness on the 
spectral properties. In the periodic case, both direct and inverse spectral 
theories have been known for a long time. In the almost periodic case, both 
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theories are recent and still incomplete. In the random case, a good 
account of the direct theory can be found in the reviews quoted above. The 
first attempt to attack the inverse problems is due to Kotani. (s) He recently 
gave a more complete version of his theory. ~ His results deal with con- 
tinuous, one-dimensional Schr6dinger operators. Their discrete analogs are 
infinite Jacobi matrices. We propose to extend Kotani's work to this case. 
As noticed in Refs. 12 and 7, there are important differences between the 
continuous and the lattice cases. Nevertheless, the strategy is the same: 
summarize, as in the periodic case, most of the spectral properties in the 
average of some functions (such as the average of the Green's function or 
the Weyl-Titchmarsch m-functions), find properties of these functions, and 
try to reconstruct random operators from these functions. Obviously, 
analytic and Herglotz functions are bound to play a crucial role. Also, the 
inverse spectral theory for periodic operators is of prime importance, for 
the reconstruction in the general random case is based on an 
approximation argument by periodic analogs. 

The terminology and the notations of the deterministic case are 
introduced in Section 2. Section 3 deals with the definition and the study of 
the w-function of a stationary Jacobi matrix. We believe that most of the 
results are essentially known. We present them in a self-contained way. The 
net result is that such a function w is in the class J f  of Herglotz functions 
on C +, as is its derivative; its range is contained in {z ~ C; Im z ~ [0, rc], 
Rez~<c} for some c~R;  and w(2) is equivalent to l o g ( - 1 / 2 )  as 2--, or. 
The original part of the paper is contained in Section 4. After some 
technical lemmas on such Herglotz functions, we show the existence of a 
stationary Jacobi matrix having for w-function the Herglotz function we 
started from. The construction relies on the approximation of such 
Herglotz functions by w-functions of periodic Jacobi matrices as charac- 
terized in the work of Kac and van Moerbeke. 

2. DETERMINIST IC  NOTATIONS A N D  PRELIMINARIES 

Let us assume that {an ; n ~ Z } and {bn ; n ~ 7/} are given sequences of 
real numbers. On the Hilbert space 12=/2(Z) w e  consider the operator H 
defined formally by 

(Hf)n=a,L+~+an_,f~ 1 + bnf~ (2.1) 

To obtain a natural self-adjoint realization of H, we proceed as follow: let 

90 = { f  = (fn)n E g_ G/2; fn = 0 for all but finitely many n e 7/} 

9 1 =  {f =(L),,~12;(a,,f~+l +a,, l f n _ l  ~-bnfn)nEl  2 } 
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and let us define the operators Hmi n with domain 90 and Hma x with domain 
~ by the formula (2.1). One easily checks that Hmin and Hm,~ are sym- 
metric and that (Hmin)* = Hrnax. Moreover, the condition 

~ 1 -~  1 
~ =  -2-~ = ct3 

n = 1 an n = 1 an 
(2.2) 

implies that Hmi n is essentially self-adjoint and that its unique self-adjoint 
extension is Hma X. The latter will be denoted by H form now on. 

The investigation of the eigenvalue equation 

(2.3) 

will be of crucial importance in the study of the spectral properties of the 
operator H. We want to use the formalism of transfer matrices and for this 
reason it is very convenient to assume that 

a , r  n62  z 

If f =  (fn)n is any solution of the eigenvalue equation (2.3), we have 

with 

and 

M ( ' ) =  Mn(2)... Ml(2 ) 

Mk( Z ) = ( ( 2 - bk -- ako ~/ak ) (2.4) 

for k~> 1. If g =  (gn)n is another solution, we can write 

( f ~ l  gn+l~=m(n'(~")(flogn / ~10) (2.5) 

and this gives 

ar ie l .+,  g . - -  fn go + 1] = aoEfl go-- fo g l ]  

by using (2.4) and (2.5) to compute the determinant of M(')(2). [ f f  and g 
are any elements of [R Z, we set 

W(f, g)n=a,Ef~+lgn- f ,  gn+l], n~Z (2.6) 
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for the Wronskian of f and g. Consequently, we just proved that the 
Wronskian of two solutions is a constant and one easily sees that this con- 
stant is different from zero if and only if the two solutions are linearly 
independent. 

We now introduce another important quantity in the spectral theory 
of differential and difference equations, the so-called Titchmarsh-Weyl 
m-function. We follow basically the Appendix of Ref. 7. 

As before, we assume that we are given two real sequences {an; n ~ Z} 
and {b.; n ~ 77}. We define the operator H+ on/211, ~x:)) as the restriction 
of the operator H to [1, ~ )  with Dirichlet boundary condition at 0. In 
fact, we set 

~ = {~P = (~P.)n >~ l e 1211, ~ ); ~b. = 0 for n large} 

~; -={~/=(~n) .>~l~12[1 ,  oo); ~ l an~n+l+an  l ~ / . - l + b . ~ n [  2< -4-o0} 
n~2 

and 

(H+~t)=fal~z+bl~tl.~ if n = l  (2.7) 
~a.tp.+l+a._lCn_l+b.~. if n~>2 

for ~p ~ - ,  and we denote by H+,mi n the operator H+ with domain ~ -  
and by H+ . . . .  the operator H+ with domain ~ - .  It is easy to check that 
H+ . . . .  is symmetric and that ( H + , m i n ) * = H + , m i n  . Moreover, the con- 
dition: 

1 
:5 = m (2.2)+ 

n~>l an 

implies that H+,mi n is essentially self-adjoint and its unique self-adjoint 
extension is H+ . . . .  . From now on we will denote this unique setf-adjoint 
extension by H+.  For .~ e C +, we let f~.,0 be the solution of the eigenvalue 
equation (2.3) that satisfies 

A,o(O) = O, A,o(1) = 1 

and we denote by f;.,o~ any solution that is square summable at + ~ .  Note 
that the space of such solutions is one-dimensional. Let G+(m, n) be the 
symmetric kernel defined by: 

1 
G[ (m, n)= f~,o(m) A,~(n) 

w(A,o, A,o~ ) 
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when m ~< n. Note also that this definition is independent of the particular 
choice of fzo~. Now, G2- is easily seen to be the kernel of the resolvent 
operator ( H + - 2 )  -1. Consequently, if one defines the Titchmarsh Weyl 
function m by 

m+(2) = ( (H+  --,~)--1~1, ~1) (2.8) 

one has 

m+(2) = G](1,  1 ) -  

For Im 2 > 0 we have 

1 f>.,o~(1) 
aof~,~(0) 

(2.9) 

I m + ( 2 ) l ~ l l ( H + - & )  a l l ~ l / I m 2  (2.10) 

and, using the first resolvent equation, 

Im m+(2) = I m  2 II(H+ - .~)-~ ~112 
Im 2 

(2.11) 
Jb1-2~12+a~ 

Now, for each k = 0, l, 2 ..... let {a(~k); n ~> 1 } be a sequence of real num- 
bers satisfying (2.2)+, {b},k); n/> 1 } be any sequence of real numbers, and 
let us denote by H~  ) the corresponding operator. Then, if 

lim aL,) = ,~,,..(0) 
k ~ o o  

and 

lim b} k) = b(, ~ 

for all n = 1, 2,..., one has that H ~  ) converges to H(+ ~ in the strong resolvent 
sense because 9 + is a common core and H~)f  converges to H(+~ for all f 
in ~ .  Using the definition (2.8) of the m-function, one obtains that 

lim m~k)(2) = m(+~ (2.12) 
k ~ o o  

uniformly in compact subsets of C +. 
Note also that the m-function m+ (2) belongs to the Herglotz class Jr .  

The latter is the class of holomorphic functions in the upper half-plane C + 
with positive imaginary part. Its relevance to the spectral theory of differen- 
tial and difference operators has been known for a long time and is par- 
ticularly well emphasized in Ref. 9. 

We will need the following technical result. 
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L e m m a  2.1. Let us assume that the sequence {(a,,b,,);n>~l} is 
bounded. Then the function ). ~ log m + ( 2 ) -  l o g ( -  1/)~) is holomorphic at 
2 = oo and has the Taylor expansion 

log m+(2) - l o g  
1 1 1 _/~--~~ SI-t--~ QS2--~ S2)-~- ~~ (S3--SIS2"JI-~ S~) 

1 ( 1 2 
+--~ s4-2 s2-sls3+sls2 4 1 ] + " "  (2.13) 

where s,,= (H~ 31, 31) , n= 1, 2,... The above series converges for 
I,~1/> 2 IIg+ II. 

ProoL We first notice that 

log m + (2) = log( (H+ - 2)-  l 31 , 31 ) 

= log _--~12 + log ( ( I - ~  H+)1151, 31) 

Now, the function 

f (z )=log((I -zH+) ~ 61,61) 

is holomorphic on the disk Iz] < �89 IIH+ II 1 and 

f ( z ) = l o g ( l +  ~ s,,z") 
rt=l 

= n ___ SnZn _~ SnZn _1_ .., 
,,= l s"z 2 n i n 1 

which gives (2.13) by taking z = 1/2. II 

3. R A N D O M  CASE: D I R E C T  T H E O R Y  

We first describe the setting of the present section. 
Let (f2,~,~,P) be a complete probability space and let T be a 

bimeasurable invertible transformation of s which preserves P. On such a 
probability space we consider a stationary sequence {(a,,, b, , ) ;n~2} of 
random variables such that: 
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(i) The common distribution of the a , ,  say #~, is concentrated on 
(0, ~ )  and satisfies 

f< (x2+llogxl)#~(dz)<~ (3.1) 
0,~) 

(ii) The common distribution of the bn, say ktb, is concentrated on 
and satisfies: 

Rx2#b(dx) < + ~  (3.2) 

The above assumption will be in force throughout this section. 
We first note that 

P ~ = c o  =1  
,7 1 an 

because, if this was not the case, we would have 

P -25 < ~ ,  a l <  M > 0  
n 1 a n  

for M > 0 large enough, and Poincar6's recurrence lemma would imply that 

P a~ < + o% am < M for infinitely many m > 0 
n 

which is impossible. Consequently, for P-almost all c~ ~ s~, one can define a 
self-adjoint operator H+(e))  on ~ -  by formula (22.7) and this operator is 
essentially self-adjoint on ~d-. One defines similarly self-adjoint operators 
H_(co) and H(~o) on ~ -  and ~ ,  respectively, and they are essentially self- 
adjoint on ~ o  and @o, respectively. 

Consequently, we can define 

m+(2,~o)=([H+(m)-2] 1~1,~1> 

for Im 2 > 0 and we have 

m+(2, c~) = 

according to (2.9). This implies that 

m+(2, T%o) -  
a,,(rm) 

I A,~(1, ~o) 
ao(~O) A,~(0, ~o) 

1 A ,~(n  + 1, ~o) 
.f;.,~(n, o~) 

(3.3) 

(3.4) 
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and 

1 
n + l  
- - l o g  tfa,~(n -4- 1, o9)1 = ~ + 1  log If~.,oo(0, co)l 

n 

+ n+lx=--~0 log laom+(2)l o T~o 

and 

lira lloglf~,~(n, co)l=E{logao}+E{loglm+(2)[} (3.5) 
n ~ o o n  

whenever the probability measure P is ergodic for the shift T. In this case 
one can also define the integrated density of states' dn(~) as the "nonran- 
dom" probability measure that appears as the almost sure limit as n --* 0o 
of the "random" probability measures dnn(~), where nn(~ ) is the average 
number of eigenvalues of the restriction of dnn(~ ) to {1 ..... n}, with 
Dirichlet boundary condition at n + 1, which are not greater than ~. The 
existence of the integrated density of states in the ergodic case is well 
known (see, for example, Refs. 1, 2, or Chapter 9 of Ref. 13). 

In the present general situation in which we do not want to assume 
the ergodicity of the sequence {(an, bn);n~Z}, one can still define an 
integrated density of state measure dn(~) by defining the nondecreasing 
function n(~) as the limit of the expectations of the random nondecreasing 
functions nn(~) described above. The fact that this limit exists can easily be 
seen from the proof given in Chapter V of Ref. 2. Note that dn(~) has total 
mass 1, so it is a probability measure on N. 

One of the main attractions of the integrated density of states is the 
so-called Thouless formula, which relates it to the Liapunov exponent 7(2) 
defined by 

7(2)= lim l l o g  ]lM(n)(2, co)l[ (3.6) 
n ~ o o  n 

in the ergodic case. The existence of this almost sure limit is guaranteed by 
the subadditive ergodic theorem. In the present situation the Lyapunov 
exponent 7(2) is defined by 

1 
7(2) = lim - E { l o g  [IM(nl(2, co)ll } (3.6)' 

n ~ o c  n 

The limit in the right-hand side exists because the sequence is sub- 
additive. Moreover, one easily sees that it is nonnegative. In the ergodic 
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case, the Liapunov exponent governs the almost sure exponential behavior 
of the transfer matrices. In general we will have only the weaker form 
(3.6)'. Nevertheless, the proof of the Thouless formula (see, for example, 
Section 2.6 of Ref. 1) can be pplied to the present situation by taking expec- 
tations at an appropriate step of the proof. This formula reads 

7(2) = f log I~ -- 21 dn(~) - E{log ao} (3.7) 

Using the bounds (2.10) and (2.11), one immediately sees that the quantity 

w(2) = E {log m + (2) } (3.8) 

makes sense for all 2 s C+ because our assumptions (i) and (ii) imply that 

E{log(1 + IbiI + la11)} < +oo 

Obviously, the function w defined by (3.8) is in the Herglotz class. 
Moreover, we have the following result: 

P ropos i t ion  3.1. Under conditions (3.1) and (3.2), there exists a 
probability measure on R, say n, such that 

f 4 dn(~)=E{bo} (3.9) 

and such that 

and 

for 2 e C + .  

Proof. 

f 4 2 dn(~) 4 2E{2a 2 + b~} (3.1o) 

w(2) = f log ~-~-~ dn(~) (3.11) 

Re w(2) ~< E{log(1/ao)} < +oo (3.12) 

The existence of the probability measure n has been argued in 
our discussion of the integrated density of states. The Thouless formula and 
the fact that 

-7(2)  - E{log ao} = Re w(2) (3.13) 

[see (3.5)] give the integrability of the function log(1 + 141) with respect to 
dn(~) and 

w(2)= f log l~-2 l  ah(~) ~ R e  
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w(2) = ~ + f log ~ - 2  dn(r (3.14) 

for some constant ~. Note that (3.12) follows from (3.13) and the fact that 
the Lyapunov exponent is nonnegative. Let us first assume that the dis- 
tribution of (ao, b0) has a bounded support. Then, Lemma 2.1 implies that 

1 1E{s,}+_~E{s2_~s~}+_)gE{s3_sls2+~s31 w(2) = log ----~ +-~ 

+ e ~4-~s~-s l s3+s~s2-~s l  + -"  

1 {ao2bo 1 3 a~bl} log--~ + ~ E{bo} ~3 = . +~bo+ 

(3.15) 

The probability measure n has compact support, say K, because the 
operators H(co) are uniformly bounded. Consequently, coming back to 
(3.14), one gets 

w(2) = ~ + fK log _~12 ( 1 - ~ )  1 dn(~) 

=c~+log ,~+ ~ ~ dn(~) 
k = l  

Identifying with (3.15), one obtains 

~=0 

f ~2 dn(~) = E{2a 2 + bg} 

f ~ dn(~) = E{3agbo + bo ~ + 3,~gb~ } 
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In the general case where we do not assume that {an, b,); n e Z }  is 
uniformly bounded but simply that E{ ]log ao] } < +oo and 
E{a 2 + b 2 } < +oo, we use a truncation procedure to reduce the problem to 
the previous case. More precisely, for each integer k/> 1 we set 

and 

a ( k ) _  an A k n - -  

b~, ~ = (b,, ~, k )  v ( - k )  

Then, according to (2.12), we have 

lira w(k)()o) = w(2) 
k ~ o o  

but since for each k ~> 1 we have 

f ~2 dn(k)(~) ~ - .  E{2a{o~)2 + b(o~,2 } ~< E{2a 2 + bo 2 } 

because of the first half of the proof, we conclude easily that 

1 dn = f log Uz 7 (#) 

and that 

f ~2dn(~)<~E{a2a~+b~} I 

We end this section with a short discussion of the function w and its 
range w(C+) in the particular case where the random sequence 
{(an, bn); no2_ is actually periodic. Let us denote by N the period and let 
us review some elements of Floquet's theory (see Ref. 5, 6, or 16 for 
details). The discriminant 

A(2) = trace M(N/(2) 

is a polynomial of degree N. Let us denote by 2~ < ""  < 2~ the roots of 
A ( 2 ) = 2  and by 2;- < " .  < 2  N the roots of A(2)= -2 .  Then we have 

21 ~ < 2 F  ~<,1s < 2 2  ~<2[ < . . .  

and the spectrum of H, say X(H), is a finite union of closed intervals: 

822/46/5-6-20 
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w(C,) 

IT 

(N-1)'~/N 

3v/N 
2w/N 
w/N . . . . . .  ~ = ~  

Figure 1 

jx= ; 

I•C• - Log a I . . . a  N 

The quantity ~n(2) = Im w(X + i0) vanishes when ~. e ( - 0% 2~- ], then 
it increases from 0 to rc/N on the first stability interval [2i ~, 21-], remains 
constant and equal to re/N on the first gap (2,-, 2 2 ), increases from reiN to 
2reiN on the second stability interval [2 2, 2~- ], remains constant and equal 
to 2reiN on the second gap (,1.f, 2J-), increases,.... On the other hand, the 
Liapunov exponent 7(2) = E{log(1/ao)} - Re w(2 + i0) decreases from + oo 
to 0 when 2 increases from - oo to 2 ~-, it vanishes on the stability intervals 
of the spectrum, it is strictly positive in the gaps, and increases from 0 to 
+ oo when 2 increases from sup Z(H) to + oo. In particular, we always 
have 

Re w(2 + i0) ~ E{log(1/ao) } = - l l o g  a , " ' au  
J y  

with equality if 2 belongs to the spectrum of H. 

4. R A N D O M  CASE: I N V E R S E  T H E O R Y  

According to the results of the previous section, the w-function of a 
random operator H(o~) constructed from a stationary sequence {(a,,  b,); 
n e Z} satisfying properties (i) and (ii) of Section 3 is such that: 

(i) Im we [0, re] and Re we [ - 0 %  c] for some finite constant e. 

(ii) w(2) has an expansion of the form 

1 51  5 2 
w(2) = log---~ + ~ -  + ~ 5 +  0(2  -2) (4.1) 

in a neighborhood of 2 = oo for some real numbers el and ~2. 

(iii) w' e ~ .  
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The purpose of this section is, given a function w satisfying these 
properties, to construct a stationary sequence {(a,, b,); neT/} satisfying 
properties (i) and (ii) of Section 3 and such that the corresponding w- 
function is the one we started from. First we will need a deeper knowledge 
of the functions of the Herglotz class that can appear in this way. 

Recall that the w-function of a random Jacobi matrix of the type we 
investigated in Section 3 has a representation 

w(2) = f log ~---~1 2 dn(~) (4.2) 

in terms of the integrated density of states. The latter is a probability 
measure on ~ that satisfies 

log(1 + I~1) dn(r  +0o (4.3) 

We now give a characterization of these Herglotz functions. 

P r o p o s i t i o n  4.1. Let we oct ~ be such that w'e  Yt ~ and 

1 
w(iy) = log + O(1) (4.4) 

- iy  

as y--* +o0. Then w admits the representation (4.2) for some probability 
measure n on N that satisfies (4.3). 

Proof. Since w ' e ~ ,  the measure (1/rt) Imw'(~+ie)d~ converges 
vaguely as e ] 0 to a nonnegative measure, say n, on N that satisfies 

f 1--~2 dn(~)< +oo 

(see, for example, Ref. 4 or Section 7 of Ref. 9). Similarly, we o~ implies 
that the measure (1/re)Im w(~ + is)d~ converges vaguely to a nonnegative 
measure v on N. (Note that n has to be the derivative of v in the sense of 
distributions.) For this measure v, we have the usual representation of 
Herglotz functions: 

f(' w(2)=c~+]~2+ ~ - 2  1 ~2 dv(~) (4.5) 

for some e e N and some/~ ~ 0, and consequently 
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if one writes n ( ~ ) - - n ( ( -  ~ ,  ~]) for the distribution function of the measure 
n. Taking derivatives of both sides and integrating by parts, one obtains 

w'(~)=/~+f d.(~) 

Taking imaginary parts of both sides of (4.5), one gets 

lm w(2) = fi Im )L + I m  2 j ~ a ;  

and 

I n(~) Im w(iy) = f l y +  y j ~2-T-~y2 d~ 

by setting ,;L = iy with y > 0, and our assumption (4.4) implies/~ = 0. Now 

w ( 2 ) - w ( i ) =  ~-  2 ~-- i 

Taking real parts of both sides and setting 2 = yi with y ~ + ~ ,  one gets 

. y ~ - l ' ~  
logy+O(1)=flog 1 + ~-5~-T) dn(~ ) 

according to our assumption (4.4). This implies that n ( ~ ) =  1 and (4.3). 
Consequently, our function w(2) is of the form 

w(2) = ~ + dn(~) 

and assumption (4.4) gives ~ = 0. II 

Corollary 4.2. Under the above conditions we must have 

0 ~< Im w(2) ~< 

The following comparison result will play an important role in the 
sequel. 



Inverse Spectral Theory for Random Jacobi Matrices 1105 

Proposition 4.3. Let n~ and n 2 be probability measures on N that 
satisfy 

(a) 

(b) 

(c) 

3 2 d. , (r  < + ~  

112 has compact support 

If the holomorphic functions w I and w 2 defined on C+ by 

satisfy 

then one has 

Wl()~)= f log ~ 1--~ ~ dn~(~), w2(2) = f log ~--~1 2 dn2(~) 

Wl(C + ) c w2(C + ) (4.6) 

f ~2 dnl(~) >i ~ j ~2 dn2(~) (4.7) 

The proof relies on the two following technical lemmas. 

l . e m m a  4.4. Let n be a probability measure on ~ satisfying 
~ dn(~)=0  and ~ 2  dn(~)< +oo and let w be the holomorphic function 
defined on C+ by 

( ,  1 
w(2) = j log ~ dn(~) 

Then, there exists a probability measure cr on ~ satisfying 

and such that the function u(2)=  e "~z) admits the representation 

u(2)= f ~ l-~_2 d~(~) (4.8) 

Proof. We first assume that n has compact support. One gets 

( ,  1 
Im w(2) = J | arg  ~ dn(2) 
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so that we must have 0 ~< Im w(2) ~< rr for all 2 ~ C +. This implies that u is 
in the Herglotz class ~ and admits the usual representation: 

u(2)=~+fl2+f(~l)~ 1 +~2)  da(r (4.9) 

Now, as 2 -~ ~ ,  we have 

1 + 12f~2 w(2) = log ~ ~'7 an(i)  + - -  

and consequently 

u ( 2 ) - - ~ e x p  ~ 

Identifying with (4.9), one gets 

u(Z)= f r do(r 

and 

f 1, f r d (4)=o 
1 

f 32 do'(~) =~ f 3 2 dn(r .... 

which completes the proof when n has compact support. In the general 
case, one approximates n by probability measures nk having compact sup- 
ports and one chooses a as a limit point of the sequence {ak;k>~ 1} of 
corresponding probability measure whose existence has just been shown. 
The rest is plain. | 

Remark. The above argument shows that we have the equality 

1 f ~2 do.(r =__ ~ f 32 dn(r (4.10) 

whenever Sr 4 dn(r < +m.  

I . emma  4.5. Let ul and u2 be conformal maps from C + into C + of 
the form (4.8) for probability measures al and a2 on ll~ satisfying 

f ~ dal(r f C da2(r 

yr d~1(r < +oo, Y 32 drrd~) < +oo 
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Then we have 

whenever 

Proof. 
C+ into C+ and admits the usual representation: 

(1 
da(~) 

Now, our assumptions on 0.~ and o- 2 imply that 

Ul(2)= l__)2II+-zf ~2dffl(~)+OCl-~)] 

and 

1107 

u~(c+)cu2(C+) 

Set u(2)= u~l(ud)~)) for 2 ~ C + .  Then u maps conformally 

as 2 ~ ~ while keeping Im 2 >/c > 0. This implies that 

in the same regime. Comparing with (4.11 ), one obtains 

u(2)=2+fcl-~_~aa(,) 

O<<.f a0.(g)=f g d0.2(r l 
with 

(4.11) 

I > fe f ~2 dnl(~) d0.1(~) dn2(~) 

Proof of Proposition 4.3. The functions w I and w 2 map conformally 
C+ into {z~C+;O<~Imz<<,n}. Indeed, Imw' l (2)>0 and Imw~(2)>0. 
Consequently, the functions u l (2 )=e  wj(a) and ue(2)=e w2(;') map confor- 
mally C§ into C§ and the above two lemmas give 
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where we have used the compactness of the support of n 2 to derive the last 
equality. | 

Remark. It is not clear if one can avoid the assumption (c). Indeed, 
we could not find a way to approximate the measures n~ and n 2 by 
probability measures with compact support in such a way that the 
inclusion (4.6) is satisfied at each step of the approximation and that the 
second moments converge. 

Our reconstruction procedure relies on the approximation of general 
w-functions satisfying (i)-(iii) from the beginning of this section by w- 
functions corresponding to periodic sequences. Their general form was dis- 
cussed at the end of the last section and a reconstruction theorem exists for 
them. It was proven by Kac and van Moerbeke. (5'6) Lemma4.7 below 
recasts this result in our framework of w-functions. 

Let w be a general w-function satisfying properties (i)-(iii). Its range 
w(C+) is given in Fig. 2. Let c~>sup~c  + Re w(),) and for each integer 
N~> 1 we define the domain DN by 

D N = ( - - ~ , c ) •  {x+ijr~/N;cj<~x<~c} 
j l 

where Q = sup {x e R; x + ij~/N ~ w(C + ) }. Recall Fig. 1. 
We have the following result: 

k e m m a  4.6. (Kac-van Moerbeke). If the domain D u is as above, 
there exists a sequence {(an, bn); n e Z} with period N, such that a~ N) > 0 

/~ , ~ ( c . 5  ' " "~/ 

0 

Figure 2 
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for all n, c = - ( I / N )  log a~ N) ' ' '  a~N u), and for which the corresponding 
w-function, say WN, satisfies 

WN(C + ) = O N ( 4 . 1 2 )  

Proof. The Riemann mapping theorem gives the existence of a 
conformal map, say WN, from C+ onto D N such that 

1 
WN(2 ) ~ log _ 2 

as 2 --, oo in C +. When 2 varies through R from oc to + o% WN(2 ) varies 
through the boundary of DN, and setting 

A(2) = 2 ch[N(WN(2) - c)] 

one gets that: 

1. Im WN(2)=0 and so A(2)~>2 for 2 e ( - o 0 , 2 + ]  for some 2 / e ~ ;  
then, Re Wu(,~. ) = C and Im WN(2) increases from 0 to ~z/N, so that 
A ( 2 ) = 2 c o s [ N I m w u ( 2 ) ]  decreases from 2 to - 2  when 2 
increases from 2 + to some 2 7 e 

2. Then, Re WN(]r ) goes from c to cl while Im WN(2 ) remains con- 
stant, equal to rr/N, so that A(2) goes from - 2  to something 
possibly smaller and back to - 2  when 2 increases from 21 to 
some )c~- 

3. Then Re W x ( 2  ) = C while Im WN(~, ) increases from ~z/N to 2~/N, so 
that A(2) increases from - 2  to 2 when )o increases from 2 2 to 
some 2 3 e 

Finally, we obtain 2i+,..., 2 + roots of A(2) = - 2  and 2{ ..... 2~ roots of 
A(2) = - 2 ,  with the result shown in Fig. 3. This figure corresponds to the 
case N even. When N is odd, the last band is [2N + , 2 u ] and A(2) ~< - 2  for 
2~>2 u.  Note that A(2) is real for 2 real, so that A(2 )=A(2 )  defines an 
analytic continuation to the lower half-plane. Now A(2) is an entire 
function. Actually A(2) is a polynomial of degree N beause A(2 )~  ~ u  for 
Z--, oe, 2eC+. 

r 7 I- 7 . . . . . . . . . .  r-- 7 

% 1; 12 12 1 N 1N 11 

6 ( I ) > 2  A(I) .<-2 b(1).>2 

Figure 3 
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Now, we can choose numbers ,/11 ..... ~/N- I such that #j belongs to the 
jth gap and impose the constraint a]N)."a~Nm=e-N'. Under these con- 
ditions we can use the Kac-van Moerbeke reconstruction theory c5'6) to 
finish the proof. | 

The final technical lemma is the following approximation result. Its 
idea (and proof) is very similar to the Caratheodory convergence theorem. 
See, for example, Ref. 4. 

I . e m m a  4.7. Let w be a Herglotz function satisfying the properties 
(i)-(iii) of (4.1) and let us assume that the distribution function n(r of the 
probability measure n giving the representation (4.2) is smooth and satisfies 

f ~2 ~(~)< +o0, f ~ dn(~)=O (4.13) 

Then, the Herglotz functions w N defined in Lemma 4.6 converge to w com- 
pact uniformly on C+.  

ProoL By Proposition 4.3 we have 

(4.14) 

for all N>~ 1, so that our assumption (4.13) implies the existence of an 
increasing sequence {Nk;k >/1 } of integers and of a probability measure fi 
on R that satisfies the condition (4.13) and such that 

l i m  r iNk  = II 
k ~ o o  

in the sense of the weak convergence of measures. Also, the uniform bound 
implies that the function # defined by 

is also a conformal mapping from C + into C + [because Im k ' ( 2 ) >  0] and 
is the compact uniform limit of the functions wu, on C+.  We show that 
f f ; = w .  

Let us first assume that the distribution function of the probability 
measure n is smooth. This assumption implies the smoothness of the boun- 
dary of w(C+) and the proof of the Caratheodory convergence theorem 
shows that we actually have w ( C + ) =  #(C+) ,  so that w and ~ are confor- 
mal mappings from C + into C + with the same range. Hence, the function 
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u(2) defined by u(2)=~- l (w(2) )  maps C+ onto C+ conformally and is 
consequently of the form 

u(2) = (a2 + b)/(c2 + d) 

for some real numbers a, b, c, and d satisfying a d -  bc > 0. Thus 

(a2 + b'] 
w(~) = ~ \c2 + d] 

Now, the limit k(~ + i0) exists and is finite for any ~ ~ ~ (see the Appendix 
of Ref. 3). Using this fact for ~--a/c and the fact that 

w( iy ) ~ log( i/ y ) 

as y-*  + ~ ,  we obtain c=0 ,  a ~ 0  and we can pick a =  1. Finally, the 
condition S ~ dn(~)= S ~ dn(~)= 0 implies b/d= 0, which proves w = ~. 

In the general case, we first approximate the probability measure n by 
probability measures n~ with smooth distribution functions (choose for 
example 

a.~(r = f j~(r - ~) a~(,7) 

for a smooth approximate identity {j~; ~>0} on R), the corresponding 
w-functions 

f log ~ 1 - ~  dn~(~) 

being compact uniformly convergent to the w-function from which we are 
starting. Then one can use the above argument | 

The main result of the paper is the following: 

T h e o r e m  4.8. Let w be a Herglotz function satisfying properties 
(i)-(iii) of (4.1). Then there exists a stationary sequence {(an, b,); n~7/} 
such that 

E{a~+ Ilog ao[ + b  2 } < +oo (4.15) 

and such that 

w().) = E{log m+(2)}, e~> -E{log ao} (4.16) 

ProoL Let us construct the domains DN from w(C+) as described in 
Fig. 2, and for each integer N we can redefine the periodic sequence 
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{(a(N),b(nN)); neZ} given in Lemma4.7 as a stationary process given 
by the coordinate projections, say (an, bn), on the product space 
f2= [(0, oo)x R] z for some probability measure PN- The corresponding 
w-function 

WN(2) = EvN{1og m+ (2)} 

satisfies wN(C + ) = DN. Notice that 

Ev~{2ao 2 + b~} = f ~2 dnN(~) 

(because of Lemma 3.1 

<~ f ~2 dn(~) 

(because of Lemma 4.3) 

< +oo (4.17) 

This implies the tightness of the family { P N ; N / >  1 of probability 
measures on f2. Let P be any limit point of this family (for notational con- 
venience we will consider that P is actually the limit of the whole sequence 
{PN;N~>I}). P is invariant for the shift operator on Q, so that the 
sequence {(a n, bn); n ~ ~} is still stationary. Moreover, 

Ev{2aZ +b~}~<lim inf EvN{2aZ +b 2} 
N ~ o c  

< + o o  

because of (4.17). If c~> sup;~c+ Re w(2), our construction gives 

C=EpN{log 1 }  EpN{1og + ,  l /  ~oot- Epu{log + ao} (4.18) 

Also, (4.17) implies that 

lim Ep~{log + ao} =Ep{log + ao} < +oo (4.19) 
N ~ c o  

Moreover, 

=c+Ep{ log  + ao) < +oo (4.20) 
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because of (4.18) and (4.19). Indeed, Skorokhod's representation 
theorem {14) allows for an interpretation in terms of almost sure con- 
vergence and one can apply Fatou's Lemma. Relations (4.19) and (4.20) 
imply 

Ep{l logao[}  < +oo 

which completes the proof of (4.15). Using again Skorokhod's theorem, 
one can think of (a}, N), b(nN)), o n c e  redefined on the same probability space, 
as converging almost surely to the {(a,, bn); n ~ ~}. Consequently, our dis- 
cussion in Section 2 leading to (2.12) gives the almost sure convergence of 
the corresponding m-functions and the deterministic bounds (2.8) give 

lira Eeu{log m+(2)} =Ee{logm+(2)} 
N ~ o o  

by Lebesgue's dominated convergence theorem. Together with Lemma 4.7, 
this gives (4.16) and the proof is now complete. I 
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